Pre-launch timing calibration standards

Eckhard Kendziorra IAA Tübingen

Crab pulse profile measured with EPIC pn

Lessons learned from XMM-Newton

- Relative timing of EPIC pn verified pre-launch (but only for relatively short intervals, relative timing verified shortly after launch but second jumps of experiment clock only detected after launch
- Absolute timing for EPIC pn NOT verified pre-launch (low priority) we still are working on in orbit verification

Pre-launch timing calibration/verification essential

Recommendation

 Verify relative timing by long exposures with periodic and stable X-ray beam
Errors in relative timing will show up in periodogram and folded light curve

- Also verify absolute timing with entire satellite (easy, has been done for ABRIXAS)

What is need for timing calibration

- Relative timing
 - Periodically modulated X-ray beam
 - directly modulated source (I of X-ray tube)
 - mechanically chopped beam
 - chopper wheel
 - step motor
 - stable oscillator $\Delta f/f \sim 10^{-9}$
 - (compare 1 Hz pulse from oscillator with GPS)
 - monitoring of frequency is essential

- Absolute timing
 - GPS clock with digital interface
 - Stimulus
 - LED for low energy detectors
 - X-ray source with mechanical shutter
 - or electrical stimulus
 - Trigger stimulus at selected time, compare event time with trigger time

Generation of periodic X-ray signal with chopper wheel

- Chopper wheel driven by step motor, controlled from stable oscillator $\Delta f/f \sim 10^{-9}$
- Stability of rotation must be monitored with e.g. optical sensor or Hall sensor

Chopper for Panter test facility

• Periods from ~ 1ms to 1sec

Chopper wheel for Panter

Absolute time

Generate stimulus at selected time T_{trig} Compare measured event time with trigger time T_{trig}

Trigger for stimulus

DCF77 Receiver & Trigger Unit

Jitter of time standards

Terrestrial time standards, DCF77, IRIG: several msec

Satellite based systems, GPS, Galileo: < 0.1 µsec

use GPS (NOT DCF77, IRIG)

Conclusion

Pre-launch calibration/verification of event timing is

- cheap and easy
- takes only some days
- safes a lot of effort after launch

should be part of pre-launch calibration/verification plan for future missions